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Abstract—. In this paper the Hardy-Weinberg equation on the frequency of alleles with its contrivances serve as a stochastic 
model which has been used along with the Markovian Property to prove the frequency of the alleles at the locus of a particular 
population in genetics. 
This Gene Pool Model has been converted to a stochastic differential equation whose existence and uniqueness of the solution 
has been proved using Picard-Lindelof Theorem. 
This provides an altogether a new way of delving into the solution which is globally consistent. The aim of this research paper is 
to is to firstly implicate the Markovian Property in one of the laws which is the cornerstone of population genetics. Secondly, 
converting the Markov process to a stochastic differential equation proposing a new global solution to the diffusion approxima-
tion as well as proving the convergence of the sequence. Thirdly, the results are validated and computed using the chi- square 
goodness of fit. The proposed statistical methodologies used for validation of the result is the R-software. 
Index Terms— BROWANIAN STOCHASTIC DIFFERENTIAL EQUATIONS, PICARD APPROXIMATION, LIPSCHITZ 
CONDITION, OPTIMUM SOLUTION, MARKOVIAN PROPERTY, LINEAR REGRESSION, ITO INTEGRAL 

——————————      —————————— 

1 INTRODUCTION                                                                   

eal world phenomenas can be observed as a pattern which 
can serve as a model when elaborated on can bring about 

a change to the society. The Markov model under the stochastic 
processes in probability theory was named after the Russian 
mathematician Andrey Markov. 
How is the stochastic process visualized in nature? This re-
quires translating assumptions relating to the relationship be-
tween the causes of its behaviour and effect into contrivances 
with its limits to determine its nite dimensional distributions. 
In the field of genetics, where this property has wide applica-
tion can be served as one model. Taking the Hardy Weinberg 
principle which states that in large randomly mating popula-
tion, allelic frequencies will remain constant barring any sort of 
evolutionary forces. Now if this principle with its contrivances 
as mentioned can be made into a model one can easily predict 
the frequency of the recessive allele and hence the probability 
of population frequency of the carriers of the recessive diseases 
can be predicted. 
1.1 LITERATURE SURVEY 
The commonly referred mathematics textbooks (e.g Ewens 
2004,Burger 2000,Rice 2004) mention the evolutionary forces 
involved in the gene pool model.The most basic of them all is 
the Wright Fischer Model which I have considered for the ran-
dom genetic drift without any evolutionary forces .I have 
modelled the Gene Pool Model generalizing the Wright 
Fischer Model for two alleles at same locus and hence, predict 
the correlation between the allelic frequency and the popula-
tion. I have also used Picard Approximation to the Brownian 
Stochastic Differential Equation. In the present paper I have 

tried to introduce a new global approach. This approach is 
mathematically more transparent than Kimura's scheme. 
For a basic two allele case proposed by Kimura (1955), which 
he later tried to implicate on several alleles (1955,1956). His 
solution being local, the probability distribution not summing 
to 1 made it very difficult to read all the quantifying properties 
of this process. 
This paper has been organized as follows: Section 1 is the Intro-
duction which is subdivided as 1.1 :Literature Survey ,Section 2 
deals with Markov Process subdivided as Gene Pool Model 
,Section 3 deals with the Diffusion Approximation, Section 4 
deals with the Stochastic Differential Equation subdivided as 
4.1 Existence and Uniqueness of the Solution 4.2 Picard Itera-
tion Section 5 deals with the Condition for Solution Existence 
and Uniqueness, Section 6 deals with the proof using Picard's 
Methods subdivided as 6.1,6.2,6.3 -proof for drift coefficient to 
be Lipschitz continuous, existence of solution, proving both the 
drift and diffusion coefficient continuous, Section 7 deals with 
Result Analysis where subsection 7.1 deals with the Global Sen-
sitivity Analysis using Regression,7.2 deals with the statistical 
methods employed to verify the result, Section 8 is Conclusion 
,Section 9 is Acknowledgement followed by the References. 

2 MARKOV PROCESS 
A stochastic process say {Xn }where nεN takes values of a count-
able set namely the state space. 
Definition: If the conditional probability distribution Ci+1 is 
independent of the states of the system in steps 0 to i-1 and is 
only dependent on tn 

p[Xn+1=in+1 l Xn=in,Xn-1=in-1.....X1=i1,X0=i0]=p[Xn+1=in+1 l Xn=in] 
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1.The condition p[Xn=in ...X0=i0]>0 will be assumed each time a 
conditional probability will be considered. 
2. All the models will be homogenous i.e. Conditional proba-
bility p[Xn+1=j|Xn=i] is independent on time such   that nεN0 i.e 
p[Xn+1=j l Xn=i]=p[Xm+1=j l Xm=i]  for all m,n ε N 
 
The specifications are as follows: 
1. Initial Probability a0 =a0 i:iεs  a0 i:=p[X0=i] 

2. Transition Probability pij=p[Xn+1=j l Xn=i] 
Theorem 2.1 
if there is σ-algebra F and probability p on R such that  
1. Each of gn where n belongs to N is a random variable. 
2. Sequence {gn }where n belongs to N is independent. 
 
2.1 Gene Pool Model 
Definition 2.2 
The Hardy Weinberg law states that the allelic frequencies over a 
finite population obtained by random mating is constant barring 
any evolutionary forces. This can be seen with the help of a result 
computed using the R software where g is the genotype of the al-
leles. 

 
 

 
    Fig 1 {HWE TEST} 

 p2+q2+2pq=1                          …………………….(2.1) 
 p+q=1 
where p=frequency of dominant allele 
q=frequency of recessive allele 
proof: 
Let X(t) define a's in allele pool of generation t in a finite popu-
lation. If the definition can be assumed as 
1.Size of the population is constant 
2.Each generation is obtained by independent random mating 
3. No evolutionary forces (selection, migration, mutation) 
The above three postulates derived from Hardy Weinberg law 
can be converted to a Markov Model. 
If X(t) is a non -negative integer. 
Let N denote the finite size of the population which is always 
less than 2N. 
Assumptions: 
the state space={0,1,2.......2N} 
t denote current time  
{X0=i0......Xt=i} which denotes i allele of genotype A in genera-
tion t 
From the assumptions generation(t+1) is created by N inde-
pendent random mating of generation t parents. It is known 
that the genotype is obtained by random mating of two inde-
pendent samples from the allele pool of generation t. Thus, al-
lele pool (t+1) is created by 2N independent random samples. 
The frequency of the recessive allele is obtained by finding the 
probability  

Xt=i  
frequency of the allele a=i/2N 
frequency of the allele A=1-i/2N 
Hence, the transition probability can be expressed as follows: 
 p[Xt+1=j l Xt=i]= (2N CJ )( 𝑖𝑖

2𝑁𝑁
)J (1- 𝑖𝑖

2𝑁𝑁
)2N-J  …………(2.2) 

Xt can take values from 0 to 2N i.e if either A or a will disap-
pear or will remain there for a future period of time.This basic 
model is therefore expressed in terms of the binomial distribu-
tion which verifies the Hardy Weinberg Law 

  
     Fig 2 {CHI-SQUARE  TEST FOR ALLELES} 

3. DIFFUSION APPROXIMATIONS 
From equation 2.2 obtained in the above section I can derive for the 
expected time A or a to be either fixed at Xt=2N or extinct at Xt=0 
given its initial condition X0.Now using the idea proposed by 
Wright(1945) to rescale time and population size.  
t= 𝑛𝑛
2𝑁𝑁

 and [Yt=
Xt
2𝑁𝑁

] then considering N tends to infinity. Once I rescale 
it I end up getting the discrete Markov Chain Yt as { 0,1/2,.....1 } 
with t=1 corresponding to 2N. 
Similarly,I can obtain X0=p= 𝑖𝑖0

2𝑁𝑁
  .Now, a basic idea of approach that 

I have used here is to find the kth central moments of this binomial 
distribution using the recurrence formula. 
By definition, the kth central moment uK is defined by 
 uK={E(Y-E(Y)}K   …………………………………….(3.1) 

For the binomial distribution B(n,p) I have Y=r, E(Y)=np,q=1-p 

uk= ∑ (𝑟𝑟 − 𝑛𝑛𝑛𝑛)𝑛𝑛
𝑟𝑟=0

k�𝑛𝑛𝑟𝑟�prqn-r   ………………………………………………… (3.2) 
Differentiating equation with respect to p where q=1-p ,I get 
duk
𝑑𝑑𝑑𝑑

=∑ �𝑛𝑛𝑟𝑟�
𝑛𝑛
𝑟𝑟=0 [(-nk)(r-np)k-1  pr qn-r]+(r-np)k[rpr-1 qn-r-pr(n-r)qn-1](3.3) 

=-nkuk-1+ 1
𝑑𝑑𝑝𝑝
∑ �𝑛𝑛𝑟𝑟�
𝑛𝑛
𝑟𝑟=0 pr qn-r(r-np)k+1                                                                            (3.4) 

=-nkuk-1+ 1
𝑑𝑑𝑝𝑝

uk+1 (3.5) 

Therefore, duk
𝑑𝑑𝑑𝑑

=-nkuk-1+ 1
𝑑𝑑𝑝𝑝

uk+1 (3.6) 

Using the recurrence formula 
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 P(t+1)-P(t)   P(t)  np-(1-p)-t    1-p+(1-p)t      

 P(t+1)−P(t)   
P(t)

=np−(1−p)−t 
1−p+(1−p)t

                                       (3.7) 

Now, partitioning the above equation t to t+1 and k por-
tions.Applying k tending to infinity I get the following result  

1
𝑧𝑧
𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

=
r+x  

 b0 +b1x
             (3.8) 

Now the following differential equation is obtained where x=-
t,r=np-(1-p) ,b0=(1-p),b1=(p-1) 

4. STOCHASTIC DIFFERENTIAL EQUATION 
Definition: 
Let a(x): Rn    →Rn and b(x): Rn →Rmn be measurable functions 
(vector and matrix valued respectively), 

W an m-dimensional Winer Process and X0 and L2 random 
variable in Rn ,independent of W.Then on Rn-valued 
stochastic process X on R+ is a solution to the autonomous sto-
chastic differential equation 
dX=a(X)dt+b(X)dW ,X(0)=X0  …………….(4.1) 
when with probability 1, it is equal to the corresponding Ito 
process, 

 X(t) =X0+ (∫ 𝑎𝑎�𝑋𝑋(𝑠𝑠)�𝑑𝑑𝑡𝑡
0 s))+∫ 𝑏𝑏�𝑋𝑋(𝑠𝑠)�𝑑𝑑𝑑𝑑𝑡𝑡

0 ……………(4.2) 
The a term is called the drift coefficient and the b term is the 
diffusion coefficien 
4.1 EXISTENCE AND UNIQUENESS OF SOLUTION 
From the equation (3.8) I can form the stochastic differential 
equation as defined in the section above as follows 
From the definition, 
𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

=kz …………………….(4.3) 
dz=a(z,t)dt+b(z,t)dWt……………………(4.4) 
The intial conditions  
z(0)=z0                              ………………….(4.5) 
when Wt ,b≥0 
The above equation represents a stochastic differential equa-
tion  
Theorem 4.1: 
Let X0,a,b and W be as defined in definition 4.1 and let a and b 
be uniformly Lipschitz continuous.Then there exists a square-
integrable non-anticipating X(t) which solves 
dX=a(X)dt+b(X)dW with the initial conditions X0 and this solu-
tion is unique 
Theorem 4.2: 
This theorem holds true for multi-dimensional stochastic dif-
ferential equations, provided a and b are uniformly Lipschitz 
inthe Euclidean norms. 
4.2 PICARD'S ITERATION 
Definition: 
Obtaining the initial condition as z0(t)=z0.Then computing ap-
proximations z1(t) , z2(t) and so on via the following recursion: 
zn+1(t)=z0+∫ 𝑓𝑓𝑡𝑡𝑡𝑡0 (zn (τ),τ)dτ                          (4.6) 

 
 
This iteration which can be used to find a solution for linear 
differential equation can be shown to converge to unique solu-
tion  
lim
𝑛𝑛→∞

𝑧𝑧n(t)=x(t)                                                 (4.7) 

 
provided f(x,t) is continuous in both arguments and Lipschitz 
continuous in the first argument. 
5. CONDITION FOR SOLUTION EXISTENCE AND 
UNIQUENESS 
Let us consider the stochastic differential equation  
 dz=a(z,t)dt+b(z,t)dWt       (5.1) 
Now using the Picard-Lindelof theorem in the above section 
on this stochastic differential equation. 

The assumptions involving this : 
 

• Continuity in both aruguments 
• Lipschitz continuity in the first argument 

 
 
 
6. PROOF USING PICARD'S ITERATIVE METHOD 
 
Theorem 6.1 
Assume that a : R→ R and b:R →R+ are uniformly Lipschitz 
,that is, there exists a constant C<∞ 
such that for all x,y ε R, 
 |u(x)-u(y)| ≤ C|x-y| and                                       (6.1) 
 |b(x)-b(y)| ≤ C|x-y|                                               (6.2) 
Then the stochastic differential equation has strong solu-
tions.In particular for any standard Brownian Motion {Wt} t≥0, 
any admissible filtration F={Ft} t≥0  , and any initial value x ε R 
there exists a unique adapted process Xt=Xt x with continuous 
paths such that I obtain equation (4.2) 

 
6.1 PROVING THE DRIFT COEFFICIENT TO BE 
LIPSCHITZ CONTINUOUS 
Proof: 
Proving diffusion coefficient is Lipschitz continuous. 
For this purpose ,considering b(X)=0 as constant treating equa-
tion (4.4) as an ordinary differential equation z’=a(z,t). 
Now proving the uniqueness by taking two solutions which 
are continuous  
\Now proving the uniqueness by taking two solutions which 
are continuous 
Zt= z0+∫ 𝑎𝑎𝑡𝑡0  (z(t)dt)+∫ 𝑏𝑏𝑡𝑡0 dW  and                    (6.3) 

yt= y0+∫ 𝑎𝑎𝑡𝑡0 (y(t)dt)+∫ 𝑏𝑏𝑡𝑡0 Dw                               (6.4) 

Now finding the difference between the two solutions I obtain 

yt -  zt =∫ 𝑎𝑎𝑡𝑡0 �𝑦𝑦(𝑡𝑡) − 𝑧𝑧(𝑡𝑡)�𝑑𝑑𝑡𝑡                                                  (6.5)  
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|yt-zt |=C∫ |𝑡𝑡0 �𝑦𝑦(𝑡𝑡) − 𝑧𝑧(𝑡𝑡)�𝑑𝑑𝑡𝑡|                      (6.6) 

This holds true stating the drift coefficient is Lipschitz contin-
uous for all t≤0 for some constant C ≤ 0 

 
6.2 PROVING THE EXISTENCE OF SOLUTION} 
Proof: 
Proving the existence of solutions using Picard's approxima-
tions 
Now defining the sequence of the stochastic process obtained 
intially 
z0(t)=z                                                                 (6.7) 
and 
Zn+1(t)= z+∫ 𝑎𝑎𝑡𝑡0  (z(t)dt)+bW(t)                          (6.8) 
To prove zn(t) converges uniformly on compacted time inter-
vals 
|zn-zn+1|≤MKn-1 hn/n! for all n                             (6.9) 
Using this ,the infinite series 
z0+(z1-z0)+(z2-z1)+....≤ z0+Mh+1

2!
MKh2.......≤ z0+ 𝑀𝑀

𝐾𝐾
[ehk-1]  (6.10) 

                                                                             
This equation is known to be convergent for all K,h,M.Thus by 
Iir strass-M test ,the series converges uniformly for[0,T] 
 

 
 
6.3{PROVING FUNCTIONS OF BOTH THE DRIFT 
AND DIFFUSION COEFFICIENT CONTINUOUS} 
 
Now using the same iterative method as in case of 
proving the drift constant to generate the approximate 
solutions. 
z0  (t)=z                                                                         (6.11) 
and 
zn+1(t)=z+∫ 𝑎𝑎𝑡𝑡0 (𝑧𝑧n(s)ds+∫ 𝑏𝑏(𝑧𝑧𝑡𝑡

0 n(s)ds)          (6.12) 
By the principle of induction the process Xn(t) is de-
fined and has continuous paths. 
Now for each t≥0 the sequence of random variables 
converges to a random variable in zt. 
E(z1(t) – z0(t))2 ≤M and t≤T, M≤∞                            (6.13) 

 and t≤ T , M ≤∞ 
for t bounded in [0,T]  
\Now by hypothesis, the functions of a and b are uni-
formly Lipschitz for C≤0 
 
 
7. RESULT ANALYSIS 
Hence, I have proved using the equation (6.6),(6.10),(6.13) the 
following criteria that must be adhered to 
while following the assumptions in section 5 to use Picard-
Lindelof theorem for the stochastic differential equations 

framed using the Gene Pool Model.The iteration converges 
and thus,the stochastic differential equation has a unique  
strong solution with the following conditions met as 

• Functions of a and b grow at most linearly in z 
• They are Lipschitz continuous in z 

Having proved the above two postulates I can therefore say 
that the following stochastic differential equation has a unique 
strong solution.The problem that can usually be faced is the 
white noise formulation of the stocastic differential equation 
with the chain rule,non-linearities and even the existence of 
the solution. The integral cannot be defined as Riemann,Les-
besgue as white noise is unbounded and discontinuous so I 
had to employ the the Ito stochastic integral.I have used the 
Picard Iteration method to prove the existence and the unique-
ness of the solution which was used only for Ordinary Differ-
ential Equations. 
7.1 GLOBAL SENSITIVITY ANALYSIS USING LIN-
EAR REGRESSION 
Given the stochastic process zt ,t ε [0,T] I get the stochastic dif-
ferential equation 
dzt=a(z,t)dt+b(z,t)dWt                                      (7.1) 
such that the expectation of the square error random variable 
is obtained  
∫ 𝑧𝑧𝑡𝑡0 t-E(zt)2dt                                         (7.2) 
is minimum. 
Suppose I denote ˆz as the best fitting process.For this purpose 
I use the linear regression principle of least 
squares.Let us now replace ˆz by a line y=ct+d with c and d 
such that sum of the squares of errors is minimized. 
f(z,t)=E[∫ 𝑧𝑧𝑡𝑡0 t  -ˆzt)2dt                              (7.3) 
The minimum obtained from this equation will provide the 
goodness of fit. 
The proof is not explained in detail here as only the compu-
tated result is mentioned. 
The following result is given below 
 f(z,t)=∫ 𝜎𝜎𝑡𝑡0

2 -1
𝑡𝑡
 COV2(zt,Wt)]dt ≥0                 (7.4) 

To prove that 
COV2(zt,Wt)] ≤ σ2 t                                      (7.5) 
I can use the Cauchy inequality 
if u,v are two random variables 
COV2(zt,Wt)] ≤ Var(u).Var(v)                   (7.6) 
This implies that here the goodness of fit is always non-nega-
tive.Here I have used the R software to compute the following 
and as seen I get p=1 which accepts the hypothesis 
made.Here,I can conclude the positive correlative between zt 

and Wt proving the strong correlation between our gene pool 
stochastic process and the Wiener(Brownian) Process. 
7.2 STATISTICAL METHODOLOGIES TO VERIFY 
THE RESULTS 
In the genetic model formulated, where the evolutionary 
forces are barred the allelic frequencies remain constant over a 
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finite population can be seen in the diagram below created us-
ing the R software. These graphs show the relation between 
the allelic frequencies and the time period of a population. 
From the graphs it can be observed as how the genetic drift 
vary for different population as explained below 

 
 
The above figure provides a bird's eye view of the genetic drift 
for a finite population barring evolutionary forces in accord-
ance with the Genetic Model following the Markovian Prop-
erty .As stated in the Hardy Weinberg law when the popula-
tion sample becomes large and finite the genetic drift is con-
stant as seen in the following diagrams as I vary the popula-
tion size i.e for a small population size the genetic drift is very 
prominent in comparison to a larger sample where the drift is 
negligible. 
Figure 1 HWE TEST AND Figure 2 CHISQ FOR ALLELES 
mentioned in section 1 of the Gene Pool Model computed us-
ing the R software verifies our result hypothesis. 
8.CONCLUSION 
In conclusion, I have tried to model a stochastic process Gene 
Pool Model and using the binomial distribution I have calcu-
lated the kth central moments resulting in a stochastic differ-
ential equation. The problem raised during this paper was to 
apply integral on the Gaussian white noise which being un-
bounded and discontinuous, could not satisfy the condition of 
Riemann or Lesbesgue integral letting me define the Itô inte-
gral now completely treating it as Brownian Stochastic Differ-
ential Equation. Using Picard's Iterative method  
I could prove the existence and uniqueness of the solution ob-
tained for a stochastic differential equation 
Lastly for the Global sensitivity of our solution I have used the 
linear regression to compute the goodness of fit between the 
stochastic process I generated the Brownian motion. My an-
swer obtained finally confirmed the relation between the two 
process, and hence the dependence of the both the drift and 
diffusion coefficient was directly proved. I have used the R-
software to generate the graphs between the allelic frequencies 
and the population sample for a better understanding. 
The main objective of this research paper is to find the proba-
bility of the allele frequency that could lead to genetic disor-
ders like haemophilia, colour-blindness, sickle-cell anaemia. 

This paper satisfies the condition of the Hardy -Weinberg 
Law, propelling us to delve deep into the  
various aspects of how genetically caused diseases can be 
eradicated for the benefit of the society at large. 
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